Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

On the structure of cadmium isopropylxanthate. Corrigendum

Edward R. T. Tiekink

Department of Chemistry, The University of Adelaide, Australia 5005
Correspondence e-mail: edward.tiekink@adelaide.edu.au
A full description for the structure of bis $(O$-isopropyldithiocarbonato)cadmium(II), $\left[\mathrm{Cd}\left(\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{OS}_{2}\right)_{2}\right]$, is presented. The structure comprises an interconnected network of 16membered $[-\mathrm{Cd}-\mathrm{S}-\mathrm{C}-\mathrm{S}-]_{4}$ rings that arises from the presence of bidentate bridging ligands. The resultant layers are stacked along the a axis.

Comment

The structural chemistry of the binary zinc, cadmium and mercury 1,1-dithiolates $\left\{\right.$ e.g. xanthate $\left({ }^{-} \mathrm{S}_{2} \mathrm{COR}\right)$, dithiocarbamate (${ }^{-} \mathrm{S}_{2} \mathrm{CN} R_{2}$) and dithiophosphate $\left.\left[{ }^{-} \mathrm{S}_{2} \mathrm{P}(\mathrm{OR})_{2}\right]\right\}$ is rich in its diversity with many varied motifs being found (Cox \& Tiekink, 1997). Hence, isolated monomeric, dimeric and cyclotetrameric structures are known, as are linear, layer and three-dimensional polymeric arrays. Often the structures are quite complicated and open to interpretation owing to the variety of metal-ligand interactions. In this context, two

(I)
distinct motifs are known for $\left[\mathrm{Cd}\left(\mathrm{S}_{2} \mathrm{COR}\right)_{2}\right]$. A square-planar geometry is found in the structure with $R=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OMe}$ (Abrahams et al., 1988), with weak Cd‥S interactions above and below the square plane. The other motif features tetra-
hedrally coordinated Cd , i.e. when $R=\mathrm{Et}$ (Iimura et al., 1972) and $R=\mathrm{Bu}$ (Rietveld \& Maslen, 1965). The recently reported structure of $\left[\mathrm{Cd}\left(\mathrm{S}_{2} \mathrm{COC}_{3} \mathrm{H}_{7}\right)_{2}\right]$ also conforms to this motif (Tomlin et al., 1999). The structure of $\left[\mathrm{Cd}\left(\mathrm{S}_{2} \mathrm{COC}_{3} \mathrm{H}_{7}\right)_{2}\right]$, (I), is shown in Fig. 1. Each Cd atom is tetrahedrally coordinated by four S atoms, each of which is derived from a bridging xanthate ligand; molecular dimensions are as given in the original report. The structure is best described as being based on a square of Cd atoms, with each edge defined by a bridging xanthate, as emphasized in Fig. 1. The 16-membered [-Cd-$\mathrm{S}-\mathrm{C}-\mathrm{S}-]_{4}$ rings that are thus formed are connected to neighbouring rings via bridging ligands to form a layer structure. Symmetry-related layers stack along the crystallographic a axis separated by hydrophobic interactions.

Figure 1
A portion of the layer structure for $\left[\mathrm{Cd}\left(\mathrm{S}_{2} \mathrm{COC}_{3} \mathrm{H}_{7}\right)_{2}\right]$ viewed approximately down the a axis. The 16 -membered rings are emphasized. The diagram was drawn with ORTEPII (Johnson, 1976) using arbitrary ellipsoids. [Symmetry codes: (i) $1-x, 1-y, z$; (ii) $x, y-\frac{1}{2}, z-\frac{1}{2}$.]

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BK1523). Services for accessing these data are described at the back of the journal.

References

Abrahams, B. F., Hoskins, B. F., Tiekink, E. R. T. \& Winter, G. (1988). Aust. J. Chem. 41, 1117-1122.
Cox, M. J. \& Tiekink, E. R. T. (1997). Rev. Inorg. Chem. 17, 1-23.
Iimura, Y., Ito, T. \& Hagihara, H. (1972). Acta Cryst. B28, 2271-2279.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Rietveld, H. M. \& Maslen, E. N. (1965). Acta Cryst. 18, 429-436.
Tomlin, D. W., Cooper, T. M., Zelmon, D. E., Gebeyehu, Z. \& Hughes, J. M. (1999). Acta Cryst. C55, 717-719.

